76 research outputs found

    Diamond-based electrode for chronic sensing in deep brain stimulation

    Full text link
    This thesis describes the development of a sensing electrode and electronic research platform that enables the measurement of fluctuating levels of neurotransmitters in the human brain. Boron doped diamond electrodes were created via a custom developed chemical vapor deposition reactor for measurement of neurotransmitters using Fast Scan Cyclic Voltammetry

    An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction

    Get PDF
    Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson’s disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come

    Oxycodone-induced dopaminergic and respiratory effects are modulated by deep brain stimulation

    Get PDF
    Introduction: Opioids are the leading cause of overdose death in the United States, accounting for almost 70,000 deaths in 2020. Deep brain stimulation (DBS) is a promising new treatment for substance use disorders. Here, we hypothesized that VTA DBS would modulate both the dopaminergic and respiratory effect of oxycodone.Methods: Multiple-cyclic square wave voltammetry (M-CSWV) was used to investigate how deep brain stimulation (130 Hz, 0.2 ms, and 0.2 mA) of the rodent ventral segmental area (VTA), which contains abundant dopaminergic neurons, modulates the acute effects of oxycodone administration (2.5 mg/kg, i.v.) on nucleus accumbens core (NAcc) tonic extracellular dopamine levels and respiratory rate in urethane-anesthetized rats (1.5 g/kg, i.p.).Results: I.V. administration of oxycodone resulted in an increase in NAcc tonic dopamine levels (296.9 ± 37.0 nM) compared to baseline (150.7 ± 15.5 nM) and saline administration (152.0 ± 16.1 nM) (296.9 ± 37.0 vs. 150.7 ± 15.5 vs. 152.0 ± 16.1, respectively, p = 0.022, n = 5). This robust oxycodone-induced increase in NAcc dopamine concentration was associated with a sharp reduction in respiratory rate (111.7 ± 2.6 min−1 vs. 67.9 ± 8.3 min−1; pre- vs. post-oxycodone; p < 0.001). Continuous DBS targeted at the VTA (n = 5) reduced baseline dopamine levels, attenuated the oxycodone-induced increase in dopamine levels to (+39.0% vs. +95%), and respiratory depression (121.5 ± 6.7 min−1 vs. 105.2 ± 4.1 min−1; pre- vs. post-oxycodone; p = 0.072).Discussion: Here we demonstrated VTA DBS alleviates oxycodone-induced increases in NAcc dopamine levels and reverses respiratory suppression. These results support the possibility of using neuromodulation technology for treatment of drug addiction

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Evaluation of reactor catalyzed secondary reactions in the captive sample pyrolysis reactor

    No full text
    Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1976.Includes bibliographical references (leaves 58-59).by Kevin E. Bennet.Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1976

    Raman and Conductivity Analysis of Graphene for Biomedical Applications

    No full text
    In this study, we present a comprehensive investigation of graphene’s optical and conductive properties using confocal Raman and a Drude model. A comparative analysis between experimental findings and theoretical predictions of the material’s changes and improvements as it transitioned from three-dimensional graphite is also presented and discussed. Besides spectral recording by Raman, which reveals whether there is a single, a few, or multi-layers of graphene, the confocal Raman mapping allows for distinction of such domains and a direct visualization of material inhomogeneity. Drude model employment in the analysis of the far-infrared transmittance measurements demonstrates a distinct increase of the material’s conductivity with dimensionality reduction. Other particularly important material characteristics, including carrier concentration and time constant, were also determined using this model and presented here. Furthermore, the detection of micromolar concentration of dopamine on graphene surfaces not only proves that the Raman technique facilitates ultrasensitive chemical detection of analytes, besides offering high information content about the biomaterial under study, but also that carbon-based materials are biocompatible and favorable micro-environments for such detection. Such information is valuable for the development of bio-medical sensors, which is the main application envisioned for this analysis

    An FSCV deep neural network: development, miniaturization, and acceleration on an FPGA

    Full text link

    Comparative Computational and Experimental Detection of Adenosine Using Ultrasensitive Surface-Enhanced Raman Spectroscopy

    No full text
    To better understand detection and monitoring of the important neurotransmitter adenosine at physiological levels, this study combines quantum chemical density functional modeling and ultrasensitive surface-enhanced Raman spectroscopic (SERS) measurements. Combined simulation results and experimental data for an analyte concentration of about 10−11 molar indicate the presence of all known molecular forms resulting from adenosine’s complex redox-reaction. Detailed analysis presented here, besides assessing potential Raman signatures of these adenosinic forms, also sheds light on the analytic redox process and voltammetric detection. Examples of adenosine Raman fingerprints for different molecular orientations with respect to the SERS substrate are the vibrational line around 920 ± 10 cm−1 for analyte physisorption through the carbinol moiety and around 1600 ± 20 cm−1 for its fully oxidized form. However, both hydroxyl/oxygen sites and NH2/nitrogen sites contribute to molecule’s interaction with the SERS environment. Our results also reveal that contributions of partially oxidized adenosine forms and of the standard form are more likely to be detected with the first recorded voltammetric oxidation peak. The fully oxidized adenosine form contributes mostly to the second peak. Thus, this comparative theoretical–experimental investigation of adenosine’s vibrational signatures provides significant insights for advancing its detection, and for future development of opto-voltammetric biosensors
    corecore